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NOMENCLATURE 

concentration of diffusing species; 

concentration at solid surface; 

concentration far from the surface; 

diffusion coefficient ; 
coefficients in Blasius series for stream 

function ; 
y-component of the flux of the diffusing 

species ; 
= v/D, the Schmidt number; 

coefficients in power-series expansion of U; 

velocity at outer edge of boundary layer; 

components of the velocity; 

distance from the stagnation point along the 

surface ; 
perpendicular distance from the surface ; 
velocity derivative at the surface ; 
= 089298; 

dimensionless distance from the surface; 

dimensionless concentration; 

coefficients in Blasius series for mass trans- 

fer; 

kinematic viscosity ; 
stream function. 

INTRODUCTION 

DIFFERENTIAL equations describing fluid flow and mass 

transfer in two-dimensional boundary layers are (see, for 

example, Schlichting [l], pp. 110-l 12) 

(3) 

The boundary conditions for a constant concentration on 

the solid surface are 

c, =co, L’, = t’). = 0 at y = 0. 

ci = c,. I’, = U(x) 1 (4) 
aty = cc. 

The velocity CT(u) is the inner limit of the appropriate outer 

(Euler) solution which describes the fluid motion outside 

the boundary layer. 

If viscous dissipation is ignored, the same equations would 

apply to heat transfer in boundary layers, in which case ci 

should be replaced by the temperature T and D replaced 

by the thermal diffusivity dl = k/PC?,. In either case the 

pertinent physical properties are taken to be constant. 

The specified boundary conditions on the solid surface are 

not completely general. Nevertheless, a constant concentra- 

tion on the surface is commonly encountered in mass- 

transfer problems as well as in the analogous heat-transfer 

problems and provides a useful starting point. The considera- 

tion of an arbitrary variation of concentration with position 

on the surface involves a higher order of complexity. 

The normal component vY of the velocity is taken to be 

zero even though a non-zero mass-transfer rate implies a 

non-zero interfacial velocity. The consequences of such an 

interfacial velocity have been treated by Stewart [2] for 

flow past a flat plate at zero incidence, by Olander [3] for a 

rotating disk, and by Acrivos [4] for boundary-layer mass 

transfer at infinite Schmidt number. In the absence of calcu- 

lated results of the effect of an interfacial velocity applicable 

to a specific situation, the mass-transfer rate calculated for 

s). = 0 can be corrected by a factor based on the papers cited. 

Solutions for the boundary-layer problem stated in equa- 

tions (lH4) can be obtained by a number of methods (see 

Schlichting Cl]). Exact solutions have been obtained for 

certain restricted geometries. Approximate methods have 

also been developed which are less restricted but also less 

reliable. In many cases the validity of approximate methods 

is judged by a comparison with the exact solutions. 

One class of exact solutions involves series expansions in 

terms of “universal” functions which can be tabulated. These 

functions are universal in the sense that they are defined so as 

to be independent of the specific form of the function U(x). 

How this is done can be seen by referring ahead to equations 

(6), (9), (10) and (11). 
The Blasius series is perhaps the simplest form of a series 

solution and involves Taylor series expansions in x about the 

stagnation point or the leading edge of the body. This pro- 

cedure was suggested by Blasius in 1908. Other series, such 

as that of Giirtler [5]. involve expansions in more compli- 
cated functions of X. 
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VELOCITY PROFILES 

For symmetric. two-dimensional flow past a cylindrical 

surface with a rounded nose. the external velocity C’(u) can 

be expressed as a power series : 

U(x) = u,x + u$ + us.x5 $- U7.Y7 + (51 

Because of the assumed symmetry about a plane parallel to 

the undisturbed flow, only the odd powers of Y are present. 

The Blasius series then expresses the stream function 

$(x, J’) also as a power series in Y : 

9 = j[v/u,] ;u,.uf,(~l + 4u3.x3/:&y1 + 6u,s’/,l~~) 

+ 8u x71 (q) + 7 .7 10~ .x:1_(q) 9 9 

+ l?u,,u’f,,(t~) + .I( (6) 

where 

‘1 = !)&,/).). (7) 

and where $ is related to the velocity components by the 

equations 

One wants to tabulate functions independent of u,, tag, 

etc. The first two functions. J, and J3. satisfy this criterion, 

but 1;, J,. etc.. do not. Hence, it is necessary to split up the 

higher order terms. For example. 

(9) 

The universal functions thus areJ,,J3. y,, II,. etc., and have 

been calculated notably by Tifford [6]. Such tables are re- 

produced by several authors (Schlichnng [l], pp. 15G151. 

Curie [7], p. 26). Because it is a power series in Y, the Blasius 

series is most useful in the region near the stagnation point. 

CONCENTRATION PROFILES 

In a similar manner the concentration (or the temperature) 

can be expanded in a power series (see. for example, Schlicht- 

ing [I]. i. 319): 

Ul 

The functions 0, and 0, are “universal” functions inde- 

pendent of u,. uJ. etc., although they do depend on the 

Schmidt number. In order to form universal functions. the 
higher order coefficients must be broken up in a manner 

similar to the hydrodynamic functions Lcompare equations 

Is)]: 

The differential equations for some of the universal mass- 

transfer, boundary-layer functions are 

(~/SC) 0; + J,@; - 2J;;02 = - 12f,O;,, I 

and the corresponding boundary conditions are 

O,, = O2 = a, = h, = 0 ai v = 0. i 

O,, = I. o2 = Al& = h, = i) dt q =- I 
( (131 

The functions J,. 1;, ys and II, appearing in equations (13) 

are the same universal functions defined in equations (6) and 

(9). 

MASS-TRANSFER COEFFICIENTS 

The differential equations for the nineteen universal func- 

tions were solved numerically. Since the universal mass- 

transfer, boundary-layer functions depend upon SC, as well 

as on v. their tabulation could become unwieldy. The local 

rate of mass transfer is of interest and is given by 

+ u~.Y~o;(o) + %%qO) + I’- u”o;,(ol 
u I 1’ 1 11 1 

i{Y 
+ 

i xxO;lol + ) 1141 
ii 1 

i 

The coefficients necessary for the calculation of the rate 01 
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,nass transfer are given in Table 1. For heat transfer, the 
Prandtl number replaces the Schmidt number. The range of 
Schmidt numbers in Table 1 was selected to cover heat- and 
mass-transfer problems of practical interest. For heat trans- 
fer in molten metals the Prandtl number is near @Ol, for 
gases it is near 0.7, and for other liquids it ranges from 5 to 
several hundred. For mass transfer in gases the Schmidt 
number is near 1, and in liquids it ranges from several 

hundred to several thousand. Some idea of the accuracy of 
the numbers in Table 1 can be gained from a comparison of 
the results with a basic mesh size of 0.02 with those for a 
basic mesh size of 0.0108. These suggest that the errors of the 
numbers in Table 1 are less than 0.01 per cent for small 
Schmidt numbers (through SC = 1) but increase to about 0.1 
or 0.2 per cent for SC = 1000. 

Asymptotic forms of the coeficients for large and for small 

Table 1. Dimensionless mass-transfer coefjicients from Blasius series 

SC @b(O) o;(O) 

0.005 
0.01 
0.02 
0.05 
0.10 
0.20 
0.50 
0.70 
1.00 
200 
500 

lOGo 
2000 
5000 

10000 
200~00 
5OOGO 

1OOOGO 

SC 

0.0545 0.0424 0.0492 -0.0114 0.0539 - 0.0264 0.0083 
0.0760 0.0598 0.0704 -0.0171 0.078 1 -00414 0.0138 
0.1054 0.0844 0.1009 - 0.0260 0.1134 - 0.0652 0.0228 
0.1610 0.1323 0.1619 - 00450 0.1856 -0.1177 00433 
0.2195 0.1847 0.2304 - 0.0675 0.2678 -0.1808 0.0682 
a2964 0.2557 0.3250 - 0.0996 0.3828 -0.2718 0.1042 
0.4334 0.3866 0.5025 -0.1613 0.6006 - 04479 0.1741 
0.4959 04476 0.5859 -0.1906 0.7036 -0.5319 0.2075 
0.5705 0.5210 0.6868 - 0.2262 0.8284 -0.6341 0.2482 
0.7437 0.693 1 0.9246 -0.3106 1.1235 - 0.8772 0.3450 
1.0435 0.9937 I.3418 - 0.4595 1.6427 - 1.3075 0.5169 
1.3389 1.2911 1.7556 - 0.6077 2.1587 - 1.7372 0.6890 
1.7104 1.6656 2.2772 - 0.7950 2.8098 - 2.2809 0.9071 
2.3529 2.3132 3.1797 - 1.1196 3.9367 - 3.2245 1.2863 
2.9869 2.9518 40698 - 1.4402 5.0484 -4.1573 1.6613 
3.7855 3.7556 5.1899 - 1.8441 6.4474 - 5.3330 2.1340 
5.1685 5.1454 7.1265 - 2.5436 8.8660 - 7.3708 2.9530 
6.5353 6.5160 9.0355 - 3.2348 11.2500 - 9.3864 3.7622 

G(O) &SO) G(O) e;(O) Pb(0) 

404 4(O) bk(O) db(O) 

0.005 0.0577 - 0.0304 -0.0160 
0.01 0.0846 - 0.0488 - 0.0263 
0.02 0.1242 - 0.0784 - 0.0429 
0.05 0.2064 -0.1443 - 0.0804 
0.10 0.3011 - 0.2241 -0.1259 
0.20 0.4345 - 0.3393 -0.1919 
0.50 0.6889 -0.5628 - 0.3201 
0.70 0.8095 - 0.6696 -0.3814 
1.00 0.9560 - 0.7998 - 0.4562 
2.00 1.3032 - 1.1096 - 0.6342 
5.00 1.9156 - 1.6595 - 0.9505 

lOQ0 2.5249 - 2.2094 - 1.2670 
2000 3.2943 -2.9061 - 1.6681 
50.00 4.6266 -4.1162 - 2.3652 

lc$WO 5.9412 - 5.3130 - 3.0547 
2OO%l 7.5956 - 6.8223 - 3.9244 
50000 10.4559 - 94393 - 5.4326 

1000~00 13.2752 - 120294 - 69254 

0.0339 -0.0110 
0.0582 -0.0193 
0.0981 - 0.0329 
0.1888 - 0.0640 
0.2993 -0.1016 
0.459 1 -0.1559 
0.7691 -0.2610 
0.9173 -0.3113 
1.0981 - 0.3726 
1.5291 -0.5190 
2.2966 - 0.7803 
3.0665 - 1.0429 
40438 - 1.3768 
5.7439 - 1.9581 
7.4269 - 2.5340 
9.5495 - 3.2605 

13.2286 -4.5199 
16.8658 - 5.7647 
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IL/J/L, I i ~IIrciIiU~ll 

--. __~__~ 

SC 11 I JO) h’,,(O) 11; ,,(()I cd’, ,,(Oi P; C,(O) r’,,,(Oi 

0,005 0.0527 - 0.0344 -0.0.1x3 0.0429 0.04x7 - 7 0.065 

0.01 0.0849 - 0,056 1 ~ 0.0641 0.0741 0.0849 ~~0~1157 

0.02 0.13 15 -0,091 I -~0.1065 0 I259 0.144X ~O~lYX1 

0.05 0.225 1 ~0~1696 -- 0.2024 0,2-t? I 0.2806 -~ 0.3840 

0 IO 0.3317 ~ 0.2647 Po.3l9l O.-W55 0.4455 ~ 0+0x: 
0~20 0.4x21 ~~ 0.4022 ~~0~3x83 U.5917 0.683X O.Y).17) 

0.50 0.7704 - 0.669 1 -0.x173 0~9907 1.1460 I ‘55X3 
0.70 09076 - 0.7969 ~~ 0.974’) I~IX17 1.3673 -1.X5X1 

1.00 I .0742 ~ 0.9576 I.1671 1.11111 I.6373 _ L.774 1 

2.00 1.4699 ~ I.3238 I-6757 I -0705 1.2874 iW93 

5G.l 2.1688 I.9836 - 7.4416 .! Y61i7 3.4333 -- 4.6617 

I om 2.8652 ~~ 2.6442 ~ 3.2594 i-Y585 4.5899 ~ 6-3X4 

2@00 3.7449 -3481X 4.296Y 5.214 I 60597 X.242(1 

50.00 5.2690 - 4.9374 --- 6.100’) 7.427 I X.6190 1 I.7341 
100~00 6.7730 - 6.3776 7.8X65 YWXX I 1’ I 540 -- 15.lY5j 

200.00 8.666 I -8.1944 - IO.1394 17.3613 14.352x - IY-5635 

50000 Il.9391 ~~ I 1.3457 - 14.0475 I 7 I 137 19-8993 - 27 13X” 

1000~00 15.1657 ~ 14.4658 17.9175 21.X5.36 25.3x52 _ 33.62’)7 
._-______ 

Table 2. Asymptotes for 
large Schmidt numbers 

e;(o) = 0.6608 SC’ 3 

O>(O) = 0.6658 SC,’ ) 

u>(O) = 0.9280 SC,’ 3 

hi(O) = -0.3339 SC’ i 

uk(O) = 1.1592 SC’ 3 
h;(O) = --0.9719 SC.’ 3 

db(O) = 0.3917 Scl’” 
U,(O) = 1.3711 SC’ 3 
h,(O) = - I.7475 SC’ 

d,(O) = -0.7190s~’ A 

e;(O) = I.7590 SC .1 

p;(O) = -0.6028 SC’ 1 

a;,(O) = 1.5690 SC”’ 

h;,(O) = ~ 1.5016 SC’ ’ 

d;,(O) = - 1.8628 SC’,~ 

e;,(O) = 2.2556 SC” 

P,;,(O) = 2.6516 SC’ ’ 

r;,(O) = -3-6335 SC”’ 
s;“(o) = 1.0506 SC’ J 

o;co, = 0.7079 SC’ L 

@>(O, = 0.5% SC,’ -T 
u;(O) = 0.6649 SC,’ L 

h;lo) = -0.1247 SC 2 

L&(O) = 0.69% I SC’ 1 

h,(O) = --0.2377 SC, z 

d,(O) = 0.0436 SC’ ’ 

C&(01 = 0.7181 SC’ 2 

h;(O) = -0.2244 St,’ 2 

d,(O) = PO.0997 SC’ 2 

C;(o) = 0.1 12’ SC,“’ 

pi(O) = -0Gl75 SC’ 2 

11;,(o) = 0.7314 SC,’ ‘2 

h\,(O) = -0.2194 S‘,‘;’ 

d;,(o) = -0.1828 Scl’z 

e; &Ol = 0.1029 SC”’ 

P\“(O) = 0.0914 SC’ z 

r;,(O) = -0.0571 SC,’ z 

2;“(o) = 0.0075 SC1 2 

Schmidt numbers are given in Tables 2 and 3. respectively. 

These are calculated from equations (15) and (17) (see. for 

example. Acrivos [8] 1: 

.\; ,,(Oi 

04) I x0 

0.033.l 

Cl.057 1 
0.1 Ill3 
O-l 743 

Ii-2663 

1k444 i 
0.5”,2 

0,63.:2 

(OSX2L 

I ~ZXii 
1.7771 

‘,349X 

3.3183 

4,33x5 
5.5xX7 

7 756’) 

‘W010 

where 

Note that when the Schmidt number is small. it is still neccs- 

sary for the product of the Reynolds number and the Schmidt 

number to be large in order for the boundary-layer form of 

the equation of convective diffusion [equation (3)] to he 

applicable. Otherwise the diffusion layer is too thick. and 

more of the outer Euler solution is needed than that repre- 

sented by L’(u). 
The only peculiar feature of the results is that the mash- 

transfer coefficients, except O;(O). approach the low SC 

asymptote from above rather than below. For man) of the 

coefficients the low Schmidt number asymptote is hardly 

applicable even at SC = 0.01. and it was necessary to extend 
the numerical calculations to SC = 10mb in order tc) \critj 

these asymptotes. Therefore a simple interpolation between 
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the low and high SC asymptotes such as that suggested by 3. 
Acrivos [S] appears to become more inaccurate for the higher 
coefficients. 4. 
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